Math 221: LINEAR ALGEBRA

Chapter 1. Systems of Linear Equations §1-3. Homogeneous Equations

 $\begin{tabular}{ll} Le & Chen 1 \\ Emory University, 2021 Spring \\ \end{tabular}$

(last updated on 01/25/2021)

Linear Combination

Linear Combination

Definition

A homogeneous linear equation is one whose constant term is equal to zero. A system of linear equations is called homogeneous if each equation in the system is homogeneous. A homogeneous system has the form

where a_{ij} are scalars and x_i are variables, $1 \leq i \leq m, \; 1 \leq j \leq n.$

Remark

- 1. Notice that $x_1=0, x_2=0, \cdots, x_n=0$ is always a solution to a homogeneous system of equations. We call this the trivial solution.
- 2. We are interested in finding, if possible, nontrivial solutions (ones with at least one variable not equal to zero) to homogeneous systems.

Example

Solve the system
$$\begin{cases} x_1 + x_2 - x_3 + 3x_4 = 0 \\ -x_1 + 4x_2 + 5x_3 - 2x_4 = 0 \\ x_1 + 6x_2 + 3x_3 + 4x_4 = 0 \end{cases}$$

Solution

$$\left[\begin{array}{ccc|c} 1 & 1 & -1 & 3 & 0 \\ -1 & 4 & 5 & -2 & 0 \\ 1 & 6 & 3 & 4 & 0 \end{array}\right] \rightarrow \cdots \rightarrow \left[\begin{array}{ccc|c} 1 & 0 & -9/5 & 14/5 & 0 \\ 0 & 1 & 4/5 & 1/5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right]$$

The system has infinitely many solutions, and the general solution is

$$\begin{cases} x_1 & = & \frac{9}{5}s - \frac{14}{5}t \\ x_2 & = & -\frac{4}{5}s - \frac{1}{5}t \\ x_3 & = & s \\ x_4 & = & t \end{cases} \text{ or } \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{9}{5}s - \frac{14}{5}t \\ -\frac{4}{5}s - \frac{1}{5}t \\ s \\ t \end{bmatrix}, \forall s, t \in \mathbb{R}.$$

Theorem	
If a homogeneous system of linear equations has more variables than	
equations, then it has a nontrivial solution (in fact, infinitely many).	

Linear Combination

Linear Combination

Definition

If X_1, X_2, \ldots, X_p are columns with the same number of entries, and if $a_1, a_2, \ldots a_p \in \mathbb{R}$ (are scalars) then $a_1 X_1 + a_2 X_2 + \cdots + a_p X_p$ is a linear combination of columns X_1, X_2, \ldots, X_p .

Example (continued)

In the previous example,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} \frac{9}{5}s - \frac{14}{5}t \\ -\frac{4}{5}s - \frac{1}{5}t \\ s \\ t \end{bmatrix} = \begin{bmatrix} \frac{9}{5}s \\ -\frac{4}{5}s \\ s \\ 0 \end{bmatrix} + \begin{bmatrix} -\frac{14}{5}t \\ -\frac{1}{5}t \\ 0 \\ t \end{bmatrix}$$
$$= s \begin{bmatrix} \frac{9}{5} \\ -\frac{4}{5}s \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -14/5 \\ -1/5 \\ 0 \\ 1 \end{bmatrix}$$

Example (continued)

This gives us

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} 9/5 \\ -4/5 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -14/5 \\ -1/5 \\ 0 \\ 1 \end{bmatrix} = sX_1 + tX_2,$$
with $X_1 = \begin{bmatrix} 9/5 \\ -4/5 \\ 1 \\ 0 \end{bmatrix}$ and $X_2 = \begin{bmatrix} -14/5 \\ -1/5 \\ 0 \\ 1 \end{bmatrix}.$

The columns X_1 and X_2 are called basic solutions to the original homogeneous system.

Example (continued)

Notice that

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = s \begin{bmatrix} 9/5 \\ -4/5 \\ 1 \\ 0 \end{bmatrix} + t \begin{bmatrix} -14/5 \\ -1/5 \\ 0 \\ 1 \end{bmatrix} = \frac{s}{5} \begin{bmatrix} 9 \\ -4 \\ 5 \\ 0 \end{bmatrix} + \frac{t}{5} \begin{bmatrix} -14 \\ -1 \\ 0 \\ 5 \end{bmatrix}$$

$$= r \begin{bmatrix} 9 \\ -4 \\ -1 \end{bmatrix} + q \begin{bmatrix} -14 \\ -1 \\ -1 \end{bmatrix}$$

 $= r(5X_1) + q(5X_2)$

where $r, q \in \mathbb{R}$.

Example (continued)

The columns
$$5X_1 = \begin{bmatrix} 9 \\ -4 \\ 5 \\ 0 \end{bmatrix}$$
 and $5X_2 = \begin{bmatrix} -14 \\ -1 \\ 0 \\ 5 \end{bmatrix}$ are also basic solutions

to the original homogeneous system.

Remark

In general, any nonzero multiple of a basic solution (to a homogeneous system of linear equations) is also a basic solution.

What does the rank tell us in the homogeneous case?

Suppose A is the augmented matrix of an homogeneous system of m linear equations in n variables, and rank A = r.

There is always a solution, and the set of solutions to the system has n-r parameters, so

- ightharpoonup if r < n, there is at least one parameter, and the system has infinitely many solutions;
- ightharpoonup if r = n, there are no parameters, and the system has a unique solution, the trivial solution.

Theorem

Let A be an $m \times n$ matrix of rank r, and consider the homogeneous system in n variables with A as coefficient matrix. Then:

- 1. The system has exactly n r basic solutions, one for each parameter.
- 2. Every solution is a linear combination of these basic solutions.

Problem

Find all values of a for which the system

$$\begin{cases} x + y & = 0 \\ & ay + z = 0 \\ x + y + az = 0 \end{cases}$$

has nontrivial solutions, and determine the solutions.

Solution

Non-trivial solutions occur only when a=0, and the solutions when a=0 are given by (rank $r=2,\ n-r=3-2=1$ parameter)

$$\left[egin{array}{c} x \\ y \\ z \end{array} \right] = s \left[egin{array}{c} 1 \\ -1 \\ 0 \end{array} \right], \quad orall s \in \mathbb{R}$$